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M onge-Kantorovich quantiles are defined in an intuitive fashion through the optimal transportation
from a reference distribution. My thesis is dedicated to their study, as they benefit from most of

sought-after properties. The adaptivity of these concepts makes them attractive for building statistical
tools, and has concentrated much attention in the recent years. My PhD project partly belongs to this line
of work, as we proposed multivariate definitions of superquantiles, expected shortfalls and related risk
measures. In addition, we focused on the estimation of a regularized version of the Monge-Kantorovich
quantile function, via a stochastic algorithm with almost-sure convergence guarantees.

Ordering multivariate data

Consider a probability distribution ν supported on
Rd. In the scalar case d = 1, the quantile function of
ν is nothing else than the generalized inverse F−1ν of
the cumulative distribution function Fν . This heavily
relies on the left-to-right ranking of samples from ν.
However, in the multi-dimensional case d > 1, the lack
of a canonical ordering precludes a consensual notion
of quantiles, see [1, 2] and references therein. The
key ingredient for a concept of quantiles is thus the
ordering it provides for observations sampled from ν.

Departing from what is known, F−1ν appears to
be the unique solution of the optimal transport (OT)
problem between the uniform µ = U([0, 1]) and ν. By
stating this as a definition when d > 1, the authors
of [1] generalized univariate quantiles to define the
Monge-Kantorovich (MK) quantile function of ν as

Q = argmin
T :T#µ=ν

EX∼µ
(
‖X − T (X)‖2

)
,

where the push-forward constraint T#µ = ν means∫
X
g dν =

∫
T−1(X )

g ◦ T dµ.

A suitable choice of reference measure µ is the one of
the random vectorRΦ, whereR and Φ are independent
and drawn uniformly from [0, 1] and the unit hyper-
sphere Sd−1 = {ϕ ∈ Rd : ‖ϕ‖ = 1}, respectively. With
this choice, the unit balls B(0, α) have µ-probability
α, and the regions Q(B(0, α)) are nested and have ν-
probability α, and thus are appropriate candidates for
quantile regions, [1, 2]. Descriptive plots in the spirit
of multivariate boxplots are given in Figure 1.1 for a
banana-shaped distribution ν. The fact that the random
vector Q(U) follows ν as soon as U is sampled from µ
is crucial. It allows to claim that Q is able to capture
all the available information. Roughly, in Figure 1.1,
the same amount of mass is contained in the regions

delimited by two red curves, and the blue curves en-
capsulate quantile regions indexed by their probability
contents.

Figure 1.1 – For any distribution, on the right, a transported
ordering from some reference measure, on the left.

Statistical tools

In R, the superquantiles and expected shortfalls
complement the information given by the quantiles. By
focusing on which univariate features we aim to extend,
we defined in [3] the MK superquantile function

S(u) =
1

1− ‖u‖

∫ 1

‖u‖
Q(t

u

‖u‖
)dt,

and the MK expected shortfall function

E(u) =
1

‖u‖

∫ ‖u‖
0

Q(t
u

‖u‖
)dt.

The counterpart of Figure 1.1 by using S and E instead
of Q induces the descriptive plots of Figure 1.2. These
functions describe central and peripheral areas of point
clouds, and they can be shown to characterize random
vectors and their convergence in distribution, [3].
Theorem. Let ν1 and ν2 be probability distributions on
Rd, with respective MK superquantile and expected short-
fall functions given by S1, E1 and S2, E2. Then,

ν1 = ν2 ⇔ S1 = S2 µ-a.e.⇔ E1 = E2 µ-a.e.
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Figure 1.2 – Descriptive plots, E on the left, S on the right.

Theorem. Let νn and ν be such that their respective
MK quantile functions Qn and Q are continuous on
B(0, 1)\0. Then the weak convergence of νn towards ν is
equivalent to

∀u ∈ B(0, 1)\0, lim
n→+∞

En(u) = E(u)

and, for any compact K ⊂ B(0, 1)\0,

lim
n→+∞

sup
u∈K
‖En(u)− E(u)‖ = 0.

Besides, if one assumes that, for every n ∈ N and Xn

drawn from νn, there exists a random vector Z with
E[Z ln(Z)] < +∞ such that ‖Xn‖ ≤ Z, then the above
weak convergence is also equivalent to

∀u ∈ B(0, 1)\0, lim
n→+∞

Sn(u) = S(u).

Perhaps the most classical univariate application of
these notions is the measurement of risk, with the
fundamental risk measures given by the Value-at-Risk
(VaR) and the Conditional-Value-at-Risk (CVaR). The
risk framework considers a vector of losses X ∈ Rd+
where each component is a positive measure. From our
definitions, one can just select a point with maximal
norm within a MK quantile contour (resp. superquan-
tile) to get a multivariate VaR (resp. CVaR), see [3] for
further detail. Such risk measurements summarize a
given dataset to answer the following :

- With probability α, what is the worst that can
happen?

- In case the worst happens, what shall we expect,
in average?

Using MK quantiles allows to take into account the
multivariate probability for the assertion “with pro-
bability α”. These are illustrated in Figure 1.3, with
different choices of reference measure that correspond
to a center-outward or a left-to-right ordering for ν.

Figure 1.3 – VaR and CVaR, center-outward or left-to-right
ordering.

Estimation

In practice, the estimation ofQ amounts to solve an
OT problem involving the empirical measure associa-
ted to samples Y1, · · · , Yn from ν. Such problem yields
a quantile function whose values are constrained to
belong to the (Yi), unless one uses regularization in a
second step. Interpolation is desirable as soon as the
focus is on quantile contours and regions, or if it is
required to compute out-of-sample estimates Q(x), for
any x. The estimation of regularized MK quantiles is
another direction of my thesis, in which we advoca-
ted the use of the entropic regularization of optimal
transport, [4]. This results in the entropic map, that has
the desirable feature of being the gradient of a convex
function, even in practice, and that is rooted in the
literature on computational optimal transport.

Therefore, the estimation procedure requires to
solve the entropically regularized OT problem. Making
use of the fact that one of the two distributions is held
fixed, we were able to design a new algorithm tackling
the continuous OT in the limit n→ +∞, for n the size
of the sample (Yi). The idea is to parametrize dual po-
tentials in the Kantorovich formulation of OT by their
Fourier coefficients, leading to a stochastic gradient
descent on absolutely summable sequences. Using sto-
chastic algorithms has two major consequences. On
the practical side, it allows to avoid the storage of the
cost matrix of size n2 between two samples of size n.
On the theoretical side, one can use tools from random
processes in order to obtain consistency results, as in
[4] where we showed the almost sure convergence of
the iterates of our algorithm.
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